Passive electrical components. Electric circuit concepts and relationship to field theory. Kirchhoff's laws. Node and mesh analysis of resistive networks. Network theorems. Controlled sources. Transient conditions. Sources of periodic signals. Average and r.m.s. values. Circuit models of diodes and transistors. Combinational logic principles and circuits. RLC circuits; sinusoidal circuit response; mutual inductance and transformers; operational amplifiers; computer aided circuit design; state space circuit representations and time responses; homogenous and particular solutions for first and second order linear differential equations; computer aided analysis of signals and systems, including state space representations; continuous time signals, sinusoids and signal norms; convolution, impulse and step responses; phasors; AC circuits (transient and steady state responses); complex power; frequency responses of circuits and systems; three-phase circuits.
Course Type | Major |
---|---|
Credit Hour | 4 |
Lecture Hour | 60 |
Biweekly Quiz, Biweekly Programming Assignment, One Midterm Exam, One Final Exam
Letter Grade | Marks | Grade Point |
---|---|---|
A | 90 - 100 | 4.00 |
A- | 85 - 89 | 3.70 |
B+ | 80 - 84 | 3.30 |
B | 75 - 79 | 3.00 |
B- | 70 - 74 | 2.70 |
C+ | 65 - 69 | 2.30 |
C | 60 - 64 | 2.00 |
C- | 55 - 59 | 1.70 |
D+ | 50 - 54 | 1.30 |
D | 45 - 49 | 1.00 |
F | 00 - 44 | 0.00 |